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Abstract 

This paper deals with flow-shop models where n items are grouped in fixed 

sequences, called clusters. The clusters are to be processed on m machines in 

the same technological order. Each machine handles the clusters in the same 

order. Each completed item is available for processing on the next machine. 

The question is how to arrange the clusters to minimize the completion time. 

Models that include setup times for clusters with identical items are also 

examined. Approximate solutions along with new lower bounds are presented. 

Those solutions are optimal for the two machine case. 

1. Introduction 

This paper considers a class of flow-shop sequencing models, referred to 

as the clustered flow-shop problems. Consider an example problem, the set of n 

items to be processed has been partitioned into k categories or clusters of 

identical items. Machine set up tines are incurred whenever processing is 

switched from items of one cluster to items of the next cluster. The magnitude 

of such setup times is significant enough to warrant processing all items in a 

cluster before processing any items from another cluster. Once a sequence of 

items within a cluster is fixed the problem reduces to one of sequencing clus- 

ters rather than sequencing individual items. Clustered problems arise in 

practice in a variety of situations. Clusters may represent a set of items to 

be shipped to a different destination. The items of a particular cluster may 

be required parts for assembly of a specific module. The arrangement of items 

within the clusters would correspond to the assembly order. 

This problem cannot be solved by existing flow-shop techniques. To solve 

this and other related problems that involve nonidentical items within a clus- 

ter we formulate three models. 

Model I assumes that the n items are grouped in k fixed sequences or clus 

ters al,c+, . . . ,ax. Those clusters are to be processed on m machines in the same 
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technological order M,,M,,. ..,&. Each completed item is ready for processing 

on the next machine. The objective is to arrange the clusters to minimize 

makespan. We also consider Model II where the order of items within some 

clusters is arbitrary. 

Model III is a generalization of Model I which incorporates time lags be- 

fore processing some or all of the items. This model covers clustered problems 

that involve setup times which can be viewed as negative time lags (see [ll]). 

Model I was first formulated by T. Kurisu [31 who solved the two machine 

case by treating it as a special case of Mitten's time lag model [Sl. He also 

solved four special three machine cases [Sl. In [41 Kurisu considered a two 

machine problem where the set of clusters is partially ordered. P. L. Maggu 

and G. Das 161 demonstrated that the two machine case can be solved by consid- 

ering instead an equivalent flow shop problem where clusters CI, are replaced by 

items a,. They developed explicit formulas for ai wherever q is a two item 

cluster. Das [I] extended this method to two special three machine cases of 

[91 Magw I Das and Kumar [71 used the same approach to solve the two machine 

Model III with positive time lags (corresponding to transport times from one 

machine to the next). 

This author examined in [12] a multimachine case of Model I and provided 

conditions when the clustered version can be reduced to a classical flow shop 

case. He also derived an approximate solution along with a lower bound. 

A simple way to find the optimal solution of the clustered problem is to 

examine all k! sequences. This approach is quite costly, however, for problems 

with kz15 even with modern computers. 

This paper presents approximate solutions of Models I, II and III that 

are optimal for the two machine case. Each model is treated separately in Sec- 

tions 2, 3,and 4. We derive new lower bounds based on the clustered structure 

that are stronger than that of 1121. The solution of the example problem which 

is a special case of Model III has been presented in Section 5. This section 

also considers properties of a related problem with zero setup times. 

2. Auuroximate Solution and New Lower Bound of Model I 

We adopt the following notations of [121: 
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t r. - the processing time of item r on M,, lsrrn, lssrm. 

T(u,m) - the completion time of sequence (Y processed on all m machines. 

We assume that processing of Q starts at zero. 

Ckt,U.V) - the processing time of sequence CI handled by &,M,,.,,...,&. 

Then C(o,l,m) = T(a,m), C(a,u,u) = I t, . 
TEU 
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CL, - the completion time of the r-th item of a given sequence processed on 

M,.M,,...,M, (processing of this sequence starts at zero) and t,,),, - the 

processing time of this item on M,. 

It is well known [21 that 

%I 
= max [CT;:, C~r-l)] + t(,) s, Cyr, = Cso) 5 0, V lsrrn, lsssm. 

Let I? be a m+n-1 sequence of cells (r,s) of a n x m matrix (t,,}. We say that P 

is a Dath if it originates at (1.1). ends at (n,m) and makes steps to the right 

or downward. Assume for convenience that P = 1,2,...,n = (Y,,(Y~,..,Q~ 

where u, = p,,~~+l,...,q,. According to [121, 

T(P,m) = max L Ls I 
i-o[l-1 (T,S)EI- 

(2) 

where [PI is a set of all possible paths, and Z t,, is the length of 
(r.s) rr 

path r. 
To find T(P,m) for the clustered model, it is convenient to consider a 

path r that: a) enters the cyl area (which occupies rows px,pl+l,...,ql) in 

column W~.~, 2sisk. b) consists of segments ~l,yI,..,y~ whose lengths are 

C(U,.l.",), C!(a,,w,,w,) and C(cr,,w,.,,m) respectively. 

It is easy to see that 

T(P,m) = max rC(uirlrWl) + C(U,,",,",) + . . . + C(cr,,",.,.m)l. (3) 
lrw,sw,+...rw,~,sm 

Assume that the wi of (3) are equal to 1 for irv and m for i>v. Then 

v-1 k 
T(P,m) z max I 

lsvsk 
[ E C(cui,l.l) 

i=l 
+ T(crv.m) + 

i=v+l 
C(cri,m,m)l = 

k 
SC max ( ; A. - ?Bi) + E E t 

lsvsk i=l 1 i=l i=l rcu rm i 1 

where 

Ai = T(ui,m) - .Z tm , Bi = T(ui,m) - 
rcu. 1 

Isisk. 

(4) 

(5) 
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For m=2, formula (4) is an equality since all w, are 1 or 2. 

Let L(P) be the right hand side of (4). 

To arrange the clusters in a sequence that minimizes L(P), apply 

Procedure I: Use Johnson's Algorithm [2] to solve a two-machine flow-shop 

problem (A,.B,) where & and Bi, defined by (51, are process- 

ing times of “item” i on the first and second machine. 

The resulting sequence, say P, is the approximate solution of Model I and 

the lower completion time bound LB, = min L(P). Notice that T(P,m)=LB, for m=2. 
P 

P is optimal (i.e., T(P,m) = LB,) whenever one of its critical paths 

moves to the right only in rows that correspond to a single cluster. 

One can show that the derivation of the lower bound of the clustered mod- 

el based on the formula T(P,m) of [12], page 320 (rather than (3)) leads to a 

lower bound, LB; = min L(P) with A, and Bi defined by 
P 

A. 
1 

= D(oi) - I tnn , Bi = D$) - E trI , Isisk , 
IEci. ?zE(I. 1 3. 

(5') 

where 

D(ci) = max (zt 
Ill-1 q, 

trl + r t + 
s=2 Ix3 

z trml . 
pi+uscQ r=pi r=u 

Due to T(a,,m) + D(q) for each i, LB, + LB;. 

Also notice that the optimality condition T(P,m) = LB; is much more strinsent 

than T(P,m) = LB, since it requires that one of the critical paths of P pass an 

entire row. Hence LB, is a considerably better bound than LB;. 

Procedure I is illustrated by the following example: 

Example 1: Consider a four machine problem where q = (1.2.3). oI = (4,5), 

a, = (6,7), cr, = (8,9,10). The t,, are given in Figure 1. 
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Apply (1) to find T(o,, 

T(a2,m) = 38, T(a,,m) = 

given in Figure 2a. 
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Ml M* 4 M, I I I 1 

Figure 1. 

m) for i=1,2,3,4. As a result we get T(o!,,m) = 52. 
39, and T(u,,m) = 69. The A, and B, defined by (5) are 

22 27 

44 41 

26 23 

35 22 

Figure 2a Figure 2b 

Procedure I produces sequence P = CY+Y,(Y,CL~. Using (4). we can see from 

Figure 2b that L(P) = max(22,66-27,92-68,127-91)+(17+16+13+25) = 110. 
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Utilizing (1) for P = 4,5,8,9,10,6,7,1,2,3, find T(P,4) = 114. The res- 

pective critical path F = (1,1),(2,1),(3,1),(3,2),(4,2),(4,3),(5,3),(6,3), 

(7,3),(8,3),(9,3),(9,4),(10,4) moves to the right in rows 3, 4, and 9 occupied 

by clusters CI, and o,. This is why LB, c T(P,m). The optimal solution of this 

example is sequence P'=azo,cr,cr, where T(P',4) = 113. Applying Procedure 1 with 

n, and B, defined by (5'), we get LB; = 104. 

Remark: If LB, < T(P,m) and the critical path of P makes its first and last 

moves to the right in rows r1 and r, (where rl is considerably 

smaller than r2) occupied by different clusters we suggest to also 

consider the known machine based bound. For the clustered case 

this bound becomes 

max [ Z t + 
u-1 m 

LBp = min 
lsusm r=l r" 

( E t 
lsi#jsk s-l Pxs + s=~+Itq,s)l. 

In the ten item Example 1, LB: = 105. 

Notice that for each special case of [ll and [51 the critical path of 

m permutation passes an entire row or an entire column. Then the 

completion time of the resulting solution is either LB; or LB:. 

3. The Case When Some Clusters are Arbitrarv Secuences (Model II) 

Assume that the order of items is arbitrarv for certain clusters o,, 

where ip1 c (l,Z,...,k). Hence the question is how to arrange the clusters as 

well as the items within each cluster o,, ie1, in order to minimize the comple- 

tion time. 

To find an approximate solution and the lower completion time bound LB, 

Procedure II: 

step 1. For each it1 use Johnson's 

the optimal solution of a two 

Algorithm to find 

machine problem 

m-l 

sequence (cluster) oi - 

m 
(t;l# tr2), pi+rsqi, where trl = Z trs, 

s=1 
tr2 = 

=iltr=. 
Let T'(oi) be the 

completion time of o, for this two machine problem. According to [91, 

m-l 
T’ (a,) - E C trs is the lower completion bound LB(o,) of cluster a,. 

rcq s=2 
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step 2. Once all clusters are fixed sequences, apply Procedure I to arrange 

the oi using the & and 8,. given by (5) for ii1, and 

A, = LB(q) - C t,, B, = LB(o,) - Z trl, for ieI, where LB(a,) is 
rEut req 

defined in Step 1. 

Let L'(P) be the right hand side of (4) where the T(a,,m) are replaced by 

LB(~) whenever it1. 

It is obvious that L' (Pf + L(P) r T(P,m) for every P. If P is the 

sequence produced by Procedure II then LB, = min L' (P). 
P 

Consider the two machine case. It is easy to show that Procedure II 

provides an optimal solution of the clustered problem. 

If T(P,m) > LB, the use of better bounds LB(u,) in Step 2 of Procedure II 

might result in an increase Of LB,. We illustrate this procedure of Example 1 

assuming that set I = (1‘4). According to Step 1, ox = 3,1,2, CL, = 10,8,9, 

T' (CT,) = 92, and T' (u,) = 116. Hence LB(q) = 49, and LB(q) = 55. Execution 

of Step 2 results in P = oIo,oIq = 4,5,10,8,9,6,7,3,1,2 where L'(P) = LB, = 104, 

and T(P,m) = 106. Notice that the machine based bound for this case is 101. 

Applying Procedure I with A, and B, defined by (5) we get the same sequence 

P = cr20~o,oI and L(P) = 106 = T(P,m) . Hence P is an optimal solution. Notice 

that critical path of P makes all its right turns in the last two rows of 

cluster q. 

4. The Clustered Model with Time Lags (Model 1111 

This author considered in [ill a generalization of the flow-shop model by 

replacing (1) with 

CT=, 
S-l = max[c(r) + a(=) s , c~r-l)l + t (r.),s , V lgrsn, lrssm. (1') 

(6) 

where Cy,, = CT,,, = 0 and a,,,,,, called time lag, is an arbitrary real number with 

a ,rr,,=O for each r. 

Let P = 1,2,...,n. Also assume 

t rs + =r,s., 2 0, v lsrrn, lassm. 

This condition automatically holds for nonnegative a,, . 

Let P(O) = ~~~,,2~,~u~,3~,....~~.~,m~], lsu,su,s...+h.,sn , be a set of 

cells where path P makes a step to the right. According to [ill, 

T(P,m) = max ( E t,, + 
r~ [rl (r,~) cr 

(7) 



352 WLODZIMIERZ SWARC 

Let Model III be a clustered version of model (1'). It is easy to show that 

T(P,m) is defined by (3) where the C(U~,W,.,,W,) are calculated from (1'). Hence 

one can use Procedure I to find the approximate solution and the lower 

completion time bound. If (6) does not hold then 

T(P,m) = max ma* ( t + 
lrjsm P,E [rjl (r, s:,,, =‘ (r.sLr, (0) 

=+J s 

where I", is a path that originates at cell (l,j) and ends at (n,m), while Pj(0) 

is a set of cells where P, turns to the right. For the clustered case formula 

(7) leads to 

T(P,m) = n-lax max [C(c,,j,w,)+C(c2,w~,w~)+...+C(c~,w~.l,m)l. 
lrj+m jrw,sw,r...rw*.,sm 

One can show (as in Section 2) that 

v V-l k 
T(P,m) r max [ max 1 E &, - L:B,,)+ E E t,1 d,f max L,(P) , (4') 

lrjam-1 lsvsk i=l i=l i=l rcu, lsjrm-1 

where Aij = C(ci,j,m) - E trs, , Bij = C(ui,j,ml - z t ,. (5") 
rcu. 1 raai =I 

For m=2, inequality (4') becomes an equation. To find the lower comple- 

tion time bound, use 

Procedure III: Apply Johnson's Algorithm to solve m-l two machine flow-shop 

problems (ql,B,I), l+jsm-1, with Ai, and B,, defined by (5"). Let L, be 

n 
the minimal value of L,(P). Since T(P,m) + Z t, , the lower completion 

r=1 

time bound is max(L,,L,,...,&., , A,) . As an approximate solution 
r=1 

choose sequence Pj with the smallest T(P,,m) among the m-l generated 

sequences. 

Introduce the following notations: 

d r* f P.. - the setup and processing times of item r on M,, 

b r. - the transportation time of moving item r from M,., to M, for processing. 

According to [ill, model (1') covers flow-shop problems that involve: 

a) the setup times 4. by setting 

L = Pr. + d,., a,, = -d,,, s>l, and a,,=O, 

b)- the transportation times b,, by setting 

L. = P... a,, = b r., S>l. and a,,=O. 

(8) 

(9) 



CLUSlTiXED FLOW SHOP MODELS 353 

c) the setup and transportation times by setting 

L = P.. + 4.. a,, = b,, - d,,. s>l, an=O. (10) 

Model III can be handled by Procedures I or III depending on whether or 

not (6) is satisfied. 

Example 2: Consider a clustered model with setup times where the d,, and p,, of 

one of the clusters, say, (1, = (1,2,3) are given in Figure 3a. 

Figure 3a Figure 3b 

To find A,, and B,, of (S"), calculate first the a,, and t,, (see Figure 

3b). Notice that condition (6) is violated since t,, + a,, = 5-7 < 0. 

Applying cl'), find C(a,,1,4) = 44. From (5") we get %,, = 44 - (4+6+9) = 25, 

B II = 44 - (5+4+6) = 29. 

5. Models with Identical Items in Each Cluster. 

Consider the model with identical items in each cluster, stated in the 

Introduction. Let d, s be the setup time on M, to process the items of (1,. 
i 

Also let p, s be the processing time of every item of q on M,. 
1 

This problem is a special case of Model III. To define the d,, and p.., 

examine an arbitrary item TECL~. Set 

d 
uis ' 

if r is the first item of a,, 

d rs = 

I 0 , otherwise, 

and 

PZ. = p,., ' v ?zEUl , 
I 

The t,, and a,, are specified by (8). 

We illustrate the solution of this model by the following: 
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Examole 3: Let k=4, s=3, and the number of items of clusters IY~,Q~,~,,~, is 3, 

4, 3, and 2 respectively. 

Label a,=(1,2,3), 1x,=(4,5,6,7), a,=(9,9,10), and a,=(11,12). 

The d a s and pa.s are given in Figures 4a and 4b. 
i 1 

Figure 4a 

i 

Figure 4b 

First find the t,. and a,, which are given for q in Figures Sa and 5b. 

“1 “2 “3 

7 17 13 q 2 8 7 

2 8 7 

Figure 5a 

“1 “2 “3 
1 
2 

3 

IjI 0 -9 -6 

0 0 0 

0 0 0 

Figure 5b 

As (6) is violated (t,,+a,, = 7-9<0), apply Procedure III. Calculating 

the C(q,j,3) we get: C(o,,1,3) = 38, C(a,,1,3) = 36, C(a,,1,3) = 52, C(cr,,l,3) 

= 32, C(a,,2,3) = 40, C&,2.3) = 30, C(q.2.3) = 51, C(a,,2,3) = 29. According 

to (5'). (&,,.q,,A,,,A,,) = (13,8,23,8), (B,,,B,,,B,,,B,,) = (21.29,15,7), 

(A,,,A,,,A,,,A.,) = (13.2,22.5), (P,I,B~z,B,I,B,I) = (7,7,6,11). 

Procedure III produces sequences P, = a,ralrqral and P, = Q~.(I,,u~,Q,. 

12 
Since z t,J = 106, L, = 8+108=116, L, = 17+108=125, the lower completion time 

r=1 
bound is 125. Next find T(P,) = 133 and T(P,) = 134. Hence P, is the approxi- 

mate solution. 
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Assume that all $,=O. Due to (8). t',=po s for each rboi. Notice that 
I 

j-l 
T(a,,m) = r tr. + z t,: + cm L. Isisk, 

S=l TEU, s=j+l 
(11) 

where trj = max t,.. One may wonder whether this model is equivalent to 
lrssm 

some classical flow-shop model with properly chosen processing times. 

For m=2 we will prove 

Property 1: The clustered model is equivalent to a k item flow-shop problem 

where p P Uil' I cr,2 are processing times of "item" oi on the first and second 

machine. 

Proof: Consider cluster cI. If tr,str, for each rso‘, then according to (11) and 

(51, A,sB, tzl=po I=Ai. If t,,st,,, rEoi then A,+BI and 
I 

t',=po 2=B,. Hence 
f 

Procedure I produces the same sequence as Johnson's algorithm applied to 

the two machine problem (p, I, P,,~). 
i I 

It is interesting to note that Property 1 does not depend on the size of 

clusters oi. One can show that this property cannot be extended to m>2 even if 

the t,, are replaced by r L.. 
real 

6. Final Remarks 

Consider a classical n-item multimachine flow-shop problem. Apply Pro- 

cedure I (of Section 2) by setting a,=i for each l+irk=n. Let P = 1,2,...,n be 

the resulting sequence and 

T(P,m) = ri:trl + C(o,l,m) + i=i+lt, , 

for some sequence u = p,p+l,...,q. Notice that cells (p,l) and (q,m) are on 

the critical path I (see (2)). Based on the finding of Section 2, we conclude 

that P is the optimal solution of the flow-shop model provided items 

p*p+1,..-8 q are processed in the indicated order as a cluster. If p=q then P 

is unconditionally optimal. 
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